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FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL

SYSTEM OF UNITS (SI)

The following factors may be used to convert the inch-pound units
published herein to the International System of units (SI).
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FLOW ROUTING IN THE SUSQUEHANNA RIVER BASIN:
PART V -~ FLOW-ROUTING MODELS FOR THE WEST BRANCH
SUSQUEHANNA RIVER BASIN, PENNSYLVANIA

By Stan A. Brua

ABSTRACT

Digital-computer, daily—-flow routing models were developed for four con-
secutive reaches of the West Branch Susquehanna River between Curwensville
and Lewisburg, Pennsylvania. These models will enable water—resources mana-
gers to evaluate efficiently the effect of present and future water-resources
developments on streamflows at six locations along the West Branch
Susquehanna River.

The models utilize a unit-response, convolution technique of flow-
routing based on diffusion analogy and multilinearization. Estimates of
streamflow from the intervening areas of each reach, wave celerity, and
wave—-dispersion coefficients are the model parameters. These were adjusted
until simulated outflow hydrographs and flow statistics adequately approxi-
mated those for observed flow data.

The overall accuracy of the models is considered good. Average, abso-
lute, daily flow errors between observed and simulated flows ranged from 8.82
to 13.70 percent for the periods that were evaluated. Volume errors for the
same periods were between -0.0l1 and 1.61 percent. Estimates of the 7-day,
10-year low flows for simulated conditions were within 5 percent of those
computed for observed flows.

INTRODUCTION

Agricultural, domestic, and industrial demands for water have greatly
increased in recent years, placing a strain on the available water resources
of many areas of the Nation. Since current trends indicate that demands for
water will increase even more rapidly in the future, severe water shortages,
which already exist in some areas, will become more commonplace if water
resources are not further developed or better utilized. To assess the impact
of future demands, an area's present water resources must be evaluated,
thoroughly. An efficient and practical means of doing so is through the use
of computer models.

In 1975, the U.S. Geological Survey and the Susquehanna River Basin
Commission (SRBC) began a series of studies to develop computerized, flow-
routing models for all major streams in the Susquehanna River basin. This
study is the fifth of the series and covers most of the West Branch
Susquehanna River, hereinafter referred to as the West Branch. Studies by
Armbruster (1977) and (1979), Bingham (1979), and Zembrzuski (1980) provide
models for the Chenango, Tioughioga, Tioga, Chemung, and Juniata Rivers and
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for the main stem Susquehanna River from Unadilla, N.Y., to Conowingo, Md.
Bingham (1979) also provides coverage for the lower 8 miles of the West
Branch Susquehanna River downstream from Lewisburg, Pa. A study by Karplus
and Dickey (1980) resulted in modified models for the Juniata and lower
Susquehanna Rivers.

The purpose of this study is to develop flow-routing models for four
consecutive reaches of the West Branch between Curwensville and Lewisburg,
Pa. These models can be used to determine the effects of present and pro-
posed water-resources development at various locations on the West Branch.
Furthermore, the results can be applied to previously developed models by
Armbruster (1977) as modified by Karplus and Dickey (1980) to extend the
evaluation to locations on the Susquehanna River downstream from the West
Branch.

Each model and summaries of their calibration and verification are
described in this report. Model adequacy is assessed by comparing volume
errors and average errors of daily flows of observed and simulated flow
sequences and by comparing flow-frequency and flow—duration characteristics
computed from simulated and observed flow data.

DESCRIPTION OF STUDY REACHES

The West Branch flows generally eastward across north-central
Pennsylvania. At its confluence with the Susquehanna River at Sunbury, the
West Branch is 237 mi long and has a drainage area of 6,981 mi? (fig. 1).

Just northeast of Lock Haven, the West Branch crosses the Allegheny
Front, which forms the boundary between two of the State's five physiographic
provinces. North and west of the Front is the Appalachian Plateau Province.
Here, the West Branch has eroded a deep and sinuous path through the plateau,
forming a relatively narrow and steep-sided valley. Downstream from the
Front to a point about 10 mi downstream from Williamsport, the West Branch
meanders through a wide, flat valley in the northernmost part of the Valley
and Ridge Province, the ridges forming part of the Appalachian Mountains. It
then turns southward across the province to its confluence with the
Susquehanna at Sunbury, meandering slightly as it flows around several

ridges. Flat flood plains have formed inside the meanders along this part of
the river.

This study is concerned with that part of the West Branch between
Curwensville and Lewisburg, a reach of 174 mi. Continuous-record gaging sta-
tions at five sites on the West Branch serve as end points for the four
reaches for which flow-routing models were developed. These gaging stations
are at Curwensville (01541200), Karthaus (01542500), Renovo (01545500),
Williamsport (01551500), and Lewisburg (01553500) and provide the data needed
to calibrate and evaluate the routing models.

The second largest of five reservoirs being studied, completed in 1965,
is on the West Branch just upstream from the gaging station at Curwensville.
The other four reservoirs are on tributary streams in the central part of the
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basin between Karthaus and Williamsport. These reservoirs are described in
the next section.

The following is a description of each study reach.

Reach l.——Curwensville (01541200) to Karthaus (01542500), length 50.8 mi.

The reach begins 0.85 mi downstream from Curwensville Lake or l.1 mi upstream
from Curwensville and terminates at Karthaus. Drainage areas at Curwensville
and Karthaus are 367 mi? and 1,462 mi2, respectively. Clearfield Creek, the
largest tributary to the reach, draining 393 mi?, enters the West Branch

11 mi downstream from Curwensville. It is estimated from recorded stream
flow data that Clearfield Creek accounts for one-half of the total flow at
the confluence. Another major tributary, Moshannon Creek, drains 274 mi2 and
enters the reach 3 mi upstream from Karthaus.

Reach 2.~-Karthaus (01542500) to Renovo (01545500), length 33.7 mi. Drainage
area at Renovo is 2,975 mi2. Major tributaries are Sinnemahoning Creek,
draining 1,035 mi2 and Kettle Creek, draining 246 mi?. Sinnemahoning Creek,
the largest West Branch tributary, enters near the middle of the reach and
has been partly regulated by a small reservoir on First Fork Sinnemahoning
Creek since 1956. Kettle Creek flows into the West Branch 6 mi upstream from
Renovo and has also been regulated by a small reservoir 8 mi upstream from
its mouth since 1962.

Reach 3.--Renovo (01545500) to Williamsport (01551500), length 57.6 mi.
Because of the large flow contribution of tributaries entering near the
middle of the reach and the abrupt change in valley geometry downstream from
the Allegheny Front, Reach 3 was subdivided. A crest-stage, partial-record
gaging station on the West Branch at Lock Haven (01545800) was selected as
the breakpoint.

Reach 3a.—- refers to the 27.2-mi reach from Renovo to Lock Haven. The
drainage area at Lock Haven is 3,345 mi?. There are no major tributaries to
the West Branch along this reach.

Reach 3b.—— refers to the remaining 30.4—ai reach from Lock Haven to
Williamsport. Drainage area at Williamsport is 5,682 mi2. Two large
tributaries, Bald Eagle Creek, draining 770 mi2, and Pine Creek, draining 986
miZ, enter along the upper half of the subreach, 2 and 11 miles,
respectively, downstream from Lock Haven. Flow from Bald Eagle Creek has
been regulated since 1971 by Blanchard Reservoir, the largest reservoir in
the study area. Bald Eagle Creek is, to a large extent, spring fed and, com-
pared with other streams in the basin, contributes a disproportionately large
flow during low-flow periods. Since 1950, flows from Pine Creek have been
partly regulated by a small reservoir on Little Pine Creek. A third signifi-
cant tributary, Lycoming Creek, has a drainage area of 272 mi2 and flows into
the West Branch just upstream from Williamsport.

Reach 4.--Williamsport (01551500) to Lewisburg (01553500), length 31,6 mi.
Drainage area at Lewisburg is 6,847 mi2., Loyalsock Creek, the largest tribu-
tary draining 494 mi2, and Muncy Creek, draining 194 mi?, enter the West
Branch 3 and 11 mi, respectively, downstream from Williamsport. Another
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tributary, Buffalo Creek, drains 134 mi2 and enters just upstream from
Lewisburg.

RESERVOIRS STUDIED

As part of its responsibility for managing the water resources of the
Susquehanna River basin, the SRBC requires new consumptive water users in the
basin to provide additional water in an amount equal to their consumptive use
whenever the streamflow from which water is drawn falls below the 7-day,
10-year low-flow and the consumptive use. The five reservoirs listed in
table 1 are considered to have sufficient storage to provide additional water
during low-flow periods, including makeup for consumptive uses. The routing
models developed for this study will, thus, enable the SRBC to evaluate the
effectiveness of these reservoirs to meet water supply needs. Streamflow
data for the first gaging stations downstream from the reservoirs were used
as input for the models.

The five reservou.rs being studied are authorized to be operated only for
flood control, recreation, and water quality. Legislation may be required to
reallocate the storage in the reservoirs to provide water supply.

DATA USED IN MODELING

Daily streamflow data for 20 continuous-record gaging stations, shown in
figure 1, were used in the modeling. The stations, their period of record, and
their drainage areas are listed in table 2.

Instantaneous streamflow data for the West Branch at Lock Haven
(01545800) for the 1958-77 water years (unpublished data, NOAA River Forecast
Center, Harrisburg, Pa.) also were used. These data, collected irregularly
during the period, generally consisted of once- or twice-daily streamflow
values. More frequent data were available for many high-flow periods. Daily
streamflow hydrographs, constructed from some of these data, were used as a
guide for developing the relation to route streamflow through reach 3a.

Additional streamflow data for five gaging stations used directly in the
routing models were simulated by the relations given in table 3. These
equations relate an appropriate period of streamflow at the stations
requiring simulation to streamflow for one or more index stations.

The relationships shown in table 3 were developed by the following
procedure:

1. Approximately 10 ranges of flows were selected for both index sta-
tions and stations to be simulated. The ranges were selected
arbitrarily with more increments selected for low flows.

2. A linear equation was fit to each flow range, using least squares
regression with the fitted line forced to pass through zero.

3. These regressions were used to select the best index station(s),
based on significance of the regression.

5
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Table 2.--Data available for use in routing study

Drainage
Station Water years area
number Station name of recordl/ (mi?)
01541000 West Branch Susquehanna River at Bower  1914-77 315
01541200 West Branch Susquehanna River at
Curwensville 1956~-77 367
01541500 Clearfield Creek at Dimeling 1914-77 371
01542000 Moshannon Creek at Osceola Mills 1941-77 68.8
01542500 West Branch Susquehanna River at
Karthaus 1941-77 1,462
01543000 Driftwood Branch Sinnemahoning Creek
at Sterling Run 1914-77 272
01543500 Sinnemahoning Creek at Sinnemahoning 1939-77 685
01544000 First Fork Sinnemahoning Creek
at Sinnemahoning 1954-77 245
01544500 Kettle Creek at Cross Fork 1941-77 136
01545000 Kettle Creek near Westport 1955-77 233
01545500 West Branch Susquehanna River
at Renovo 1908-77 2,975
01548000 Bald Eagle Creek at Beech Creek
Station 1911-77 559
01548500 Pine Creek at Cedar Run 1919-77 604
01549500 Blockhouse Creek near English
Center 1941-77 37.7
01549700 Pine Creek below Little Pine
Creek near Waterville 1958-77 944
01550000 Lycoming Creek near Trout Run 1915-77 173
01551500 West Branch Susquehanna River
at Williamsport 1896~77 5,682
01552000 Loyalsock Creek at Loyalsockville 192674
1976-77 443
01552500 Muncy Creek near Sonestown 1941-77 23.8
01553500 West Branch Susquehanna River
at Lewisburg 1940~77 6,847

l/ October 1 - September 30.
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4, The average coefficient for each index station was then adjusted by
trial and error in order to balance the number of positive and nega-
tive errors between observed and simulated flows.

This procedure yielded suitable linear relations for West Branch at
Curwensville (01541200) and Loyalsock Creek at Loyalsockville (01552000).
Similar relations could not be developed for the other three stations and
efforts were redirected to developing exponential relations for First Fork
Sinnema-honing Creek at Sinnemahoning (01544000), Kettle Creek near Westport
(01545000), and Pine Creek near Waterville (01549700). The index station(s)
that produced the most significant linear regression were used to develop the
exponential equation(s) by the following procedure:

1. The coefficients from the regressions for each index station were
plotted against the discharge corresponding to the midpoint of each
range of the index-station flow.

2. A least squares curve—-fitting program was used to fit an exponential
function through these points.

3. These exponential equations were then substituted for the simple coef-
ficient in the linear relation between the flows at the index
station(s) and the flows at the station to be simulated.

4. The resulting equation(s) were used to compute simulated flows which
then were compared to observed flows. Coefficients were adjusted by
trial and error to balance the mumber of positive and negative flow
errors.

The procedure described above was used instead of a straight forward
regression because regression analyses of daily streamflow data provide
mathematically sound relationships which frequently are hydrologically
inadequate. A hydrologically acceptable relationship may sacrifice some
reduction in flow volume error or average daily flow errors to achieve a
satisfactory balance between the number and distribution of positive and
negative daily flow errors. It is often impossible to obtain a hydrologically
acceptable relationship when giving equal weight to each and every daily flow
value as is the case in linear regression analyses. Therefore, the
regression analyses were used only to determine the most significant index
stations and provide the first approximation of the coefficients to be used
in the final relations.

The final daily flow and flow volume errors are included in table 3.
The equations used to compute these errors are given in the section, "Model
Calibration.”

Four of the five stations requiring simulation of streamflow data are
stations used to represent reservoir outflows. For 01541200, 01544000, and
01545000, streamflow data were missing only for pre-reservoir or natural
conditions. Natural conditions also existed during the 2-year period of
missing record for 01552000, However, at least 2 years of concurrent



observed natural flow data were available for developing relations for these
stations. The above techniques could not be used to estimate the missing
natural flow data for the 1942-50 water years for Pine Creek near Waterville
because there are no observed unregulated flow data. Since 1950, streamflows
at this site have been regulated by a reservoir on Little Pine Creek, a tri-
butary which joins Pine Creek 4 miles upstream from the gaging station. A
reservoir-regulation model for Little Pine Creek Reservoir is needed before
valid estimates of the missing regulated flow data for the 1950-57 water
years at 01549700 can be made. Such a model probably could also be used
indirectly to develop an adequate relation for simulating the missing unregu-
lated flow data. The relation given in table 3 for simulating streamflow at
01549700 is based on a comparison of observed, regulated flows at 01549700 to
unregulated flows at two other gaging stations in the Pine Creek basin for
the 1958-77 water years. Flow data generated by this relation were used only
as input to the verified model for reach 3 in an effort to provide simulated
streamflow data on the West Branch at Williamsport and Lewisburg for the
1942-57 water years. The consequences of using these simulated Pine Creek
data in the routing models is discussed in the section, "Application of
Models."

Except for station 01549700, streamflows generated by the relations in
table 3 will hereafter be considered as observed flow data. Simulated data,
as subsequently discussed, will refer to data generated by the flow-routing
models or that produced by the relation for 01549700.

DESCRIPTION OF FLOW-ROUTING MODELS

Daily flow~routing models were developed for each of the four study
reaches by the U.S. Geological Survey computer program J351 (Shearman and
others, 1979). The program applies unit-response, convolution techniques to
route flows through each reach. The unit-response functions determined by
the program, are computed by the diffusion—analogy method discussed by Keefer
and McQuivey (1974). The two parameters used to determine the response func-
tions are wave celerity and wave dispersion. Wave celerity accounts for the
travel time of streamflow through the reach. Wave dispersion accounts for
the attenuation or damping of the wave by the effects of channel storage.

The multiple linearization option offered by the program was used to account
for the variation of celerity and dispersion with discharge.

The routing process is illustrated in figure 2. First, inflow to the
reach 1s separated into several flow segments. A single linear response
function is then applied to each segment to route it through the reach. The
routed segments are then summed to obtain the outflow from the reach.

Estimates of the intervening streamflow to each reach were added before,
and (or) after routing, depending on the configuration of tributary streams
to the reach. Streamflow at gaging stations downstream from the reservoirs
were included as a separate part of the intervening flow.

Losses and gains in streamflow to and from bank storage were not treated
as a separate modeling component in any of the study reaches. However, they
are implicitly accounted for since total streamflow is accounted for in the
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modeling process. The modeling results do not reveal trends at any flow
range that would indicate that bank storage is a significant factor in this
part of the basin. Specifically, there is no pattern of less runoff and more
baseflow occurring between reaches.

MODEL CALIBRATION

Each of the four flow-routing models were calibrated by the following
trial and error procedure.

1. Preliminary estimates of the celerity and dispersion coefficients for

4.

6.

each reach were determined by the methods suggested by Keefer and
McQuivey (1974).

Initial estimates of the flow from ungaged streams in the intervening
area of each reach were made by multiplying the flow for a suitable
gaged tributary stream (index station) by the ratio of total inter-
vening area to gaged intervening area. Where two or more index sta-
tions were available the ungaged area was distributed arbitrartily to
those stations for the purpose of the initial estimates.

The gaged flow from tributary streams and the estimates of flow from
the ungaged areas were distributed on the basis of their contribution
to the upper or lower ends of the reach.

Outflow hydrographs were generated using the following as input to
the routing models: streamflows for the gaging station at the
upstream end of the reach, estimates of total intervening flow, and
the estimated celerity and dispersion coefficients.

Observed and simulated hydrographs were plotted for several periods
of at least one year's duration. Periods were selected so as to have
sustained low flows and several significant rises.

The adequacy of the calibration was then evaluated by:

a. Visual examination of observed and simulated outflow hydrographs.
b. Magnitude of daily flow errors.

¢. Volume errors.

d. Distribution of daily flow errors.

The celerity and dispersion coefficients were adjusted and steps 4,
5, and 6 repeated until the timing of peaks and troughs of the simu-
lated hydrographs matched those of the observed hydrographs.

The differences between observed and simulated daily flows were

computed. Logarithms of the differences were then regressed against
logarithms of observed daily flows at one or more index stations to
refine the coefficients for the index stations. The index stations

12



with highest predictive capability were selected for this purpose.

9. The routing coefficients and the cdefficients applied to index sta-
tions were further adjusted and steps 4 through 6 repeated until the
best possible equation was developed.

The criteria for evaluating the adequacy of calibration were as follows:
1. Total volume error less than 2 percent;
2. Daily flow error less than 15 percent;

3. Distribution of daily flow errors approximately normal both within
and among ranges of flows;

4, Very few individual daily flow errors in excess of 30 percent;
5. Timing of peaks and troughs approximately correct;
6. Balance of positive and negative daily flow errors.

For reach 3, the plot of differences in daily flow errors versus flow
at several index stations showed a straight line, so that a single equation
could be used to represent the flow from the intervening area. For reaches
1, 2, and 4 those plots and the distribution of flow errors showed that dif-
ferent relations were needed for different flow ranges. Divisions of flow
were established and separate equations developed for each division. Expo-
nential relations were used in some cases to represent the flow ranges,
resulting in a substantial reduction of modeling errors.

Relations describing the final calibrated flow-routing models and sche-
matic diagrams of each reach are shown in figures 3-6. The final celerity
and dispersion coefficients are listed in table 4. Multiple linearization
was not used in the model developed for reach 3a. The best method developed
for simulating streamflow for the West Branch at Lock Haven (01545800) was a
simple addition of an unlagged and lagged component of the streamflow at
Renovo (01545500). The final coefficients applied to these components,
determined by a trial and error procedure, are given in the relation pre-
sented in figure 5. In effect, this is analagous to a single unit-response
function determined from a single celerity and dispersion coefficient.

Figures 7 and 8 show observed and simulated outflow hydrographs for the
West Branch at Karthaus (01542500) and Renovo (01545500) for parts of a
calibration period. Both show relatively good agreement between observed and
simulated flows indicating good calibration of the models for reaches 1 and
2. Comparisons of observed and simulated hydrographs for the West Branch at
Williamsport (01551500) and Lewisburg (01553500) were generally more favor-
able.

Additional evaluation of the adequacy of the calibrated models was
accomplished by simulating outflow for each reach for the longest time period
for which both inflow and ocutflow had been observed. Using a combination of

13
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Figure 3.--Schematic diagram of reach 1 showing the relations used
in model calibration.
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Figure 4.--Schematic diagram of reach 2 showing the relations used
in model calibration.
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Figure 5.--Schematic diagram of reach 3 showing the relations used
in model calibration.
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Figure 6.--Schematic diagram of reach 4 showing the relations used
in model calibration.
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observed data and estimated data, streamflows were simulated for the 1942-77
water years for reaches 1 and 2. Since neither observed nor estimated flow
data were available for Pine Creek near Waterville (01549700) prior to the
1958 water year, simulations for reaches 3 and 4 were limited to the 1958-77
water years. Daily flow and flow volume errors for these data (table 5) were
computed using the following equations:

X 100

n
Daily flow error (in percent) = ) W - Q%
1=1 %

n

where Q, and Qg are observed and simulated flows in ft3/s, respectively, for
the ith day, and n is the number of days in the calibration period; and

Volume error (in percent) = _XQV:_XE%) X 100
o

where V5 and Vg are observed and simulated flow volumes in ft3/s - days,
respectively, for a calibration period.

As shown in figure 9, the accuracy of the flow-routing models seem to be
largely dependent upon the proportion of ungaged tributary flow in a reach to
total drainage area. Data compiled by Zembrzuski (1980) in Part IV of this
series of flow-routing studies are also plotted and shows a similar trend.

MODEL EVALUATION

To evaluate the models, presented in the previous section, each was
rerun using the outflows generated by the upstream model as the inflow to the
next reach downstream. Daily flow and volume errors between the outflows
simulated in this manner and observed flows are less than 14 and 2 percent,
respectively, and are not highly cumulative (table 6).

A primary objective of the study was to develop reliable models for
modeling streamflow during low-flow periods. Favorable comparisons of flow-
duration and low-flow frequency curves developed from the observed and simu-
lated data were, therefore, part of the final criteria for evaluating the
accuracy of the calibrated models.

Flow-duration curves, which show the percentage of time that specified
discharges are equalled or exceeded, are shown in figures 10-13 for the sta-
tion at the downstream end of each reach. These curves show excellent
agreement throughout the range of flows encountered.

The 7-day, low-flow frequency curves were developed from series of
annual minimum, 7-day average flows for both simulated and observed
conditions. The annual low-flows were determined on the basis of climatic
years, which run from April 1 to March 31, the year being designated by the
calendar year in which the climatic year ends. Water years are not
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Table 5.-—Model calibration errors

Errors, in percent

Reach Period Daily flows Flow volume
1 October 1, 1941 to September 30, 1977 13.70 -0.01
2 October 1, 1941 to September 30, 1977 7.35 1.62
3 October 1, 1957 to September 30, 1977 7.45 - .06
4 October 1, 1957 to September 30, 1977 6.66 «57

Table 6.,~~Model evaluation errors

Errors, in percent

Reach Period Daily flows Flow volume
1 October 1, 1941 to September 30, 1977 13,70 -0.01
2 October 1, 1941 to September 30, 1977 10.13 1.61
3 October 1, 1957 to September 30, 1977 8.82 .09
October 1, 1941 to September 30, 1977 10.39 1.69
4 October 1, 1957 to September 30, 1977 9.50 «65
October 1, 1941 to September 30, 1977 9.80 1.25
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Figure 9.--Relation between daily flow errors and the ungaged drainage
area of each reach.
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Figure 10.--Flow-duration curves for station 01542500 for observed and
simulated conditions, 1942-77 water years.
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Figure 11,--Flow-duration curves for station 01545500 for observed
and simulated conditions, 1942-77 water years.
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Figure 12.,--Flow-duration curves for station 01515500 for observed and
simulated conditions, 1958-77 water years.
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acceptable for use in these analyses, as the possibility is good that a sig-
nificant low flow may span from the end of one water year into the beginning
of the next water year. The analyses, therefore, use climatic years, which
number one less than the mumber of water years of data available.

Visual comparisons of the 7-day, low-flow frequency curves presented in
figures 14-17, also show excellent agreement. The recurrence interval, given
on the abscissa of each figure, is the average interval of years during which
flows equal to or less than a given value would be expected only once.

Values of the 7-day low flow having a recurrence interval of 10 years
(Q7.10)» commonly used in establishing water resources policies for low-flow
periods, are given in table 7. Each of the Q7 jo values computed from simu-
lated data are within 5 percent of those computed from observed data.

The streamflow data used in the aforementioned analyses are nonhomo-
geneous, reflecting a progressive change from unregulated to highly regulated
streamflow. As these analyses should generally be performed only for homoge-
neous conditions, use of these analyses for purposes other than this study
may not be valid.

APPLICATION OF MODELS

The model was used for several applications. In evaluating the flow-
routing model for reach 3, a record of streamflow for the 1942-77 water years
was generated for the West Branch at Lock Haven (01545800), a key location
for which continuous, daily flow data were not previously available. Flow-
duration and 7-day, low-flow frequency curves, similar to those presented in
the previous section, were developed from the simulated data and are shown in
figures 18 and 19.

As part of this study, the SRBC required that continuous flow simula-
tions for the 1942-77 water years be made for the station at the downstream
end of each of the four routing reaches. This has already been accomplished
for Karthaus (01542500) and Renovo (01545500) as part of evaluating the
models for reaches 1 and 2. As another application of the routing models,
flow data for Pine Creek near Waterville (01549700) for the 1942-57 water
years were determined by the relation given in table 3. These were merged
with the observed data for this station and used as input to the model for
reach 3 to produce a continuous record of simulated daily flows at
Williamsport (01551500) for the period required. Simulated flows at
Williamsport were then used as input to the reach 4 model to simulate flows
at Lewisburg (01553500) for the same period.

A comparison of the daily flow and volume errors for reaches 3 and 4 for
1957-77 and 1942-77 is shown in table 6. The addition of the simulated Pine
Creek data, which are in effect "regulated” flows being used to represent
unregulated conditions during 1942-50, resulted in greater errors at both
Williamsport and Lewisburg. The effect of using the simulated data is
illustrated further by the low-flow frequency curves for the two statioms
(figs. 20 and 21). The Q7,10 values for these simulated conditions at
Williamsport and Lewisburg for the 1942-77 climatic years are 11.8 percent
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and 4,2 percent higher, respectively, than those computed from observed data.
For comparison, Q7 10 values determined from simulated flows for the 1958-77
water years, using only observed data for Pine Creek as input to the routing
model for reach 3, are 0.6 percent lower and 1.3 percent higher than those
determined from the observed data at Williamsport and Lewisburg, respec-
tively, during this period. Differences between flow—-duration curves for
simulated and observed conditions at Williamsport and Lewisburg, presented in
figures 22 and 23, for the 1942-77 water years are not as discernible.

Plans for future use of the flow-routing models are also being
considered. To effectively evaluate the operation of reservoirs over a given
period, concurrent streamflow data for both unregulated and regulated con-
ditions must be simulated for that period. The relations given in table 3
for West Branch Susquehanna River at Curwensville (01541200), First Fork
Sinnemahoning Creek at Sinnemahoning (01544000), and Kettle Creek near
Westport (01545000) were used for simulating unregulated flows downstream
from Curwensville, First Fork Sinnemahoning, and Kettle Creek Reservoirs,
respectively. These simulated flows are available on computer files of the
SRBC. In addition, the SRBC plans to develop similar relations for Bald
Eagle Creek at Beech Creek Station (01548000) and Pine Creek near Waterville
(01549700) to simulate unregulated conditions downstream from Blanchard and
Little Pine Creek Reservoirs. The SRBC also plans to develop reservoir-
regulation models for simulating regulated conditions at each of these sites.
Alternative reservoir-operating schemes may also be applied and their effects
easily evaluated by the flow-routing models developed by this study.
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Table 7.--Seven—day, 10-year, low flows for gaging stations
at the downstream end of each reach

Period Q7,10 (££3 /8) Error
Station (climatic years) Observed Simulated (percent)
01542500 1943-77 135 129 -4.4
01545500 1943-77 175 176 .6
01551500 1959-77 525 522 - .6
01553500 1959-77 626 634 1.3
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Figure 18.--Flow-duration curve for station 01545800 for simulated
conditions, 1942-77 water years.
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DISCHARGE, IN CUBIC FEET PER SECOND
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PERCENTAGE OF TIME DISCHARGE IS EQUALED OR EXCEEDED

Figure 22.--Flow-duration curves for station 01551500 for observed and

simulated conditions, 1942-77 water years.
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Figure 23.~-Flow-duration curves for station 01553500 for observed and

PERCENTAGE OF TIME DISCHARGE IS EQUALED OR EXCEEDED

simulated conditions, 1942-77 water years.
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SUMMARY

Digital computer, daily flow-routing models have been developed,
calibrated, and evaluated for four reaches of the West Branch Susquehanna
River between Curwensville and Lewisburg, Pennsylvania. The models will
enable water-resources managers to evaluate the operating schemes of five
reservoirs in the study area, particularly as they relate to low flows. They
have already been used to simulate 36 years of daily flow data for conditions
at Lock Haven, a site where continuous flow data were not previously
available.

Although modeling errors are inherent in all the simulated data,
accuracy of the routing models is considered to be adequate. Average abso-
lute daily flow errors between observed and simulated flows ranged from 8.82
to 13.70 per cent for the periods evaluated. Volume errors for the same
periods, were between -0.01 and 1.6 percent. Estimates of the 7-day,
10-year, low flows for simulated conditions were within 5 percent of those
computed for observed conditions.
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